CHROM. 13,245

Note

Analysis of mimosine and 3-hydroxy-4(1H)-pyridone by high-performance liquid chromatography

B. TANGENDJAJA and R. B. H. WILLS*

School of Food Technology, University of New South Wales, P.O. Box 1, Kensington 2033 (Australia) (Received August 14th, 1980)

Mimosine, β -[N-(3-hydroxy-4-oxopyridyl)]- α -aminopropionic acid, is a nonprotein amino acid that occurs in the tropical plants, *Mimosa pudica* and more importantly, in *Leucaena leucocephala*. Its presence in *Leucaena* has prevented the widespread use of this legume for intensive animal feeding as mimosine induces the depilatory and other toxic effects in ruminants and monogastric animals^{1,2}. 3-Hydroxy-4(1H)-pyridone (DHP), a metabolite of mimosine in both plants³ and animals⁴, has also been associated with the development of various abnormal growth or metabolic effects in ruminants^{5,6}.

A range of methods has been developed for the analysis of mimosine and/or DHP utilising ion-exchange and paper chromatography⁷, gas chromatography⁸, an amino acid analyser⁹, and colorimetry with an auto-analyser¹⁰. All these methods are unsatisfactory for use as a standard routine method as they are either specific for only mimosine or DHP, are not suitable for analysis of both plant and animal extracts, are tedious and time-consuming, or are subject to variable losses during analysis. This paper describes a sensitive and simple method for the simultaneous analysis of mimosine and DHP in plant material and urine by high-performance liquid chromatography (HPLC).

METHODS AND RESULTS

HPLC analyses were performed on a μ Bondapak C₁₈ column in a Waters liquid chromatograph (Model No. ALC/GPC 244) using a single wavelength UV (280 nm) absorbance detector. Rapid elution and good separation of mimosine and DHP in standard solutions was obtained using a solvent system of 0.2% (w/v) orthophosphoric acid in double distilled water at a flow-rate of 1 ml/min (Fig. 1a). There was a linear response of both peak height and peak area to concentration of mimosine and DHP with the limits of detection being 1 ng mimosine and 2 ng DHP.

Leaf samples of *Leucaena* were prepared for analysis by initially holding the leaf at 20°C for 24 h, to ensure the production of some DHP³, and then freeze dried. Dried leaf (25 mg) was ground in a mortar with 0.1 N hydrochloric acid (10 ml) to extract mimosine and DHP⁷, the mixture was then centrifuged for 10 min at 7500 g and the supernatant was filtered under nitrogen (60 p.s.i.) through a membrane ultrafilter. Analysis of the leaf extract (10- μ l aliquot) showed that sharp resolution of mimosine and DHP was retained and there were no major components in the extract that interfered with the analysis (Fig. 1b).

0021-9673/80/0000-0000/S02.25 © 1980 Elsevier Scientific Publishing Company

Fig. 1. Chromatograms of the separation of mimosine and DHP. (a): Standards; (b): extract from *Leucaena* leaf; (c): standards at reduced flow-rate (0.5 ml/min); (d): hydrolysed urine. Sample composition: 1 = mimosine; 2 = DHP-glucoside; 3 = DHP.

Urine obtained from ruminants that have been fed Leucaena can contain mimosine, DHP and DHP-glucoside⁴. DHP and DHP-glucoside in a standard solution were partially resolved when the solvent flow was reduced to 0.5 ml/min (Fig. 1c). However for most studies only a total estimate of DHP is required and a quantitative conversion of glucoside to DHP can be achieved by acid hydrolysis⁷. Fresh urine was mixed with an equal volume of 10 N hydrochloric acid and heated at 110°C for 4 h, the pH was adjusted to pH 3 with sodium hydroxide, the solution filtered and made up to volume. Analysis of the urine extract (10- μ l aliquot) showed that DHP gave a sharp peak with only a small amount of mimosine present and no DHP-glucoside (Fig. 1d). There were no major interfering compounds in the extract.

ACKNOWLEDGEMENT

We wish to thak Dr. M. P. Hegarty, CSIRO Division of Tropical Pastures, Queensland for supplying the samples for analysis.

REFERENCES

- 1 L. N. Owen, Vet. Rec., 70 (1958) 454.
- 2 P. J. Reis, Aust. J. Agr. Res., 29 (1978) 1043.
- 3 M. Matsumoto, E. G. Smith and G. D. Sherman, Arch. Biochem. Biophys., 33 (1951) 201.
- 4 M. P. Hegarty, P. G. Schinckel and R. D. Court, Aust. J. Agr. Res., 14 (1964) 153.
- 5 M. P. Hegarty, R. D. Court, M. D. Christie and C. P. Lee, Aust. Vet. J., 52 (1976) 490.
- 6 M. P. Hegarty, C. P. Lee, G. S. Christie, R. D. Court and K. P. Haydock, Aust. J. Biol. Sci., 32 (1979) 27.
- 7 M. P. Hegarty, R. D. Court and P. M. Thorne, Aust. J. Agr. Res., 15 (1964) 168.
- 8 J. M. L. Mee and C. C. Brooks, J. Chromatogr., 62 (1971) 141.
- 9 J. Mzik, J. Chromatogr., 144 (1977) 146.
- 10 R. G. Megarrity, J. Sci. Food Agr., 29 (1978) 182.